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1. Statement of problem. Consider the motion of a stream of gas with 
uniform subsonic velocity and at zero angle of attack past a double wedge- 
shaped profile (Fig. 11, of length 2 1 and apex angle 2n/( = 26. Since 
the flow is synvnetrical only the upper half-plane (y > 01 need be con- 
sidered. ‘lhe oncoming stream begins to slow down ahead of the profile, 
from some given velocity r. at infinity down to zero velocity at the apex 
0. After this, it speeds up again to reach sonic velocity along a para- 
bolic line AB. lhis line is of finite length in the subsonic case, extends 
to infinity in a direction transverse to the flow in the sonic case, and 
in the supersonic cases it is terminated by means of at least one shock 
wave, the exact character of which is unknown. In sonic flow the hyperbolic 
region influences [ 1 1 only that part of the elliptical region, directly 
ad.jacent to the line of transition and to the limiting characteristic 

B’F. 

Fig. 1. Fig. 2. 

Ihe boundary value problem corresponding to the given flow in the 
hodograph plane (Fig. 2) can be formulated as follows: 

‘lhe stream function I//(T, 0) must be a solution of the Chaplygin equa- 
tion 12 1 
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(T=w=/w=mrx) fJ=(x-1)-f. 

which satisfies the following boundary conditions 

Y (2, 0) = 0 for Og+r<q (condition of 

Y (2, 6) = 0 for Ogv<v, (condition of 
wall) 

symmetry) (1.2) 
flow along the (1.3) 

X=l for 8 = 6 t===?;3 (condition that sonic velocity is 
attained at point A) 

(1.4) 

y=(l on the characteristic AF (condition at the center of 
expansion A) 

(i-5) 

Here w is the fluid speed, w,,, is the rn~~ speed, K is the exponent 

of the adiabatic curve and t _ = @P+lV corresponds to sonic velocity, 

while 8 is the angle between*the velocity vector and the x-axis. We must 
also satisfy the conditions on the shock wave bounding the supersonic 

zone At3. Further, since all stream lines in the hodograph plane originate 

from the same point D(r 0, 0) corresponding to the flow velocity at 
infinity, the stream function at this point has a singularity. In the 

r 

~~e~~r’~~~= I 

1 the problem stated becomes a determinate triconic 

, 8 in the shaded region (Fig.21 of the fr , 0) plane. 

Previous investigations in this region have been confined to flows 

around thin wedges [ 3) 4 1 with velocities near that of sound, Here all 

authors use Tricomi’s equation [ 5 1 

y,, + rlyee = 0, ‘1 _ (x + I)“* -T-(1-+) (1.6) 

Cole, in his paper [ 3 I concerning the subsonic flow of a compressible 
gas around wedges, first found the solution to equation (1.6) satisfying 

all boundary conditions of the subsonic region (1.21, (1.3) and (1.4),and 
with the singularity corresponding to the flow at infinity. This solution 

cannot be considered completely satisfactory, however, since in the limit- 

ing case of sonic flow, shown in [ 6 1 , the solution does not have the 

required singularity introduced by Frank1 [ll. Trilling and Walker 

succeeded in satisfying condition (1.5) by adding to Cole’s solution a 

series of regular solutions of (1.6). Using this more accurate solution 
the sonic line AB becomes curved (in comparison with Cole’s sonic line). 
and more realistically shaped. 

‘Ihe problem of sonic flow about a wedge was solved by Guderley and 

Yoshihara [ ‘7 ‘f and Ovsiannikov [ 8 1 in the subsonic case, Tricomi’s 

equation [ 1.6 I was applied to investigate the flow. 

In flow around a wed@, however, a critical point arises at the sharp 
nose in the vicinity of which velocities are quite small. It follows that 
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equation (1.6) is not valid in this region and a more exact one (1.1) 

has to be applied. Mackie and Pack [ 9 1 have found the solution to this 

equation that satisfies conditions (1.2) and (1.3) and has the required 

singularity at this point (r 0, 0). For this they used the method of 
generalizing an incompressible flow. Consider an incompressible flow 

past a profile with velocity at infinity equal to w,, and having a complex 

potential 

(1.7) 

‘lhe method of generalizing consists in changing from this potential to a 

“generalized” complex potential of the form 

W = C d, fv (T,,) $, (T) e-iv0 (7 < ?I) (1.8) 

Here r 0 corresponds to the oncoming stream, and 

is Olaplygin’s [ 2 1 function well known in gas dynamics. 

F is a hypergeometric function with parameters 

‘Ihe “generalizing” function fv(rO) must satisfy the limiting condition 

W; Vi as 7, f0 + OQ3-+ 0) i.e. -. - 

f” (7.0) - %J-“‘2 as q-0 (1.9) 

However, this condition is not sufficient to determine a unique “gene- 

ralizationl . The major difficulty of the above method arises in the ana- 

lytical continuation of series (1.8) into the region r > r 0 i.e. down- 

stream beyond EN. Mackie and Pack [o 1 overcame this difficulty by using 

the simplest choice for fv(r 0) = e-ySO, where 

(1 .lO) 

Investigations of the above flow show that the corresponding stream 

function in the limiting case of sonic flow does not have the required 

singularity of Frank1 [ 1 1 . Besides, the Mackie and Pack 19 1 generalized 

an incompressible flow, about a half-body consisting of a finite wedge 

of equal sides followed by a semi-infinite plate. We are interested in 

profiles of finite length. 

In this work we initially formulate the problem of compressible flow 
around a finite double wedge-shaped profile which we shall solve by an 

approximate procedure based on the exact equation (1.1). 

Consider the singularity corresponding to a stream at infinity with 

boundary conditions (1.21, il.31 and (1.4). Ilere the use of the exact 

equation (1.1) permits us to consider a double wedge of arbitrary apex 

angle and arbitrary thickness. It is understood that the solution will 
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not be unique, since the conditions in the supersonic region are not 

satisfied. To solve the problem we shall again use the method of general- 

izing an incompressible flow. In order to get rid of the major drawback 
of the solution of Mackie and Pack we shall impose new demands on the 

function f,,(r,,) together with (1.9). 

The generalizing function, while being as sinple as possible, should 

give, in transonic flow, a stream function which has Frankl’s singular- 

ity C 1 1 i.e. has the form: 

(1.11) 

Further, for nearly sonic values of r O the function f,,(r O) must 
describe the “generalized” flow, corresponding to the transonic law of 

similarity 114 I. With this we shall completely determine the method of 

approximating r O to r *. The method described will then eve correct flow 

behavior at the ends of the range of variation of r ,,I 0, r *I . We should 
expect from this that the property of similarity will be fairly realistic- 

ally defined for the functions fV(r O) in the whole range of r,,. It will 

be shown later that all the requirements imposed on f,,(r O) can be satis- 
fied if the function is chosen to be of the following form: 

fy(ro) =e+JS. I + “;:,I} 1 (c-T> (1.12) 

where B is an arbitrary constant, and the factor (2n)-1 is chosen for 

ease of calculation. 

2. Subsonic gas flow past double wedge-shaped profile.'Ihe 
problem of incompressible fluid flowina symnetrically past a double 

wedge-shaped profile (Fig. 11, with the fluid velocity at infinity equal 

to wO can be solved with the help of conformal mapping. 

Using the Schwarz-Christoffel theorem, we find the following canplex 

potential 

Here c2 is an arbitrary constant. Expanding this into a series, we 

get 

IVi(i) - = ca ~ 
- (22 - 1) !! QnS 

2n n! (w < WCJ 
?I=1 

(2-l) 

The symbol (Zn- l)! ! denotes the product of odd numbers. This series 
converges in the region [ 6J] = 1, with the exception of point 8 = 1 which 
is a singular point and corresponds to the flow at infinity. Generalizing 
this result with use of (1.8) and (1.12) we obtain the following “general- 
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ized” complex potential 

pjmf = -43 - (Zn-I)!!. 

n_l  znn! ( * , @Z.-f 

f+<nE ) e--M (**+W (llnc (T) (2.2) 

and the stream function 

“1 (r-h - 1) !! B/S + 5‘ Y’ (T, e) = ca 2 * - 
n=l 2” n! i+</gnce 

--nf@* + nE (T) sin (2.3) 

These series converp for r < 7 9 (s < so). If we take account of the 
fact that as we Ret 

f, (qJ - ~;~lz [1 + 0 (so-“)1 for TO -, 0, 

i.e. 
j$,Tll) -..+ WiC1) for 70 4 0 

and the requirement (1.9) is fulfilled. Cases of nearsonic and sonic 
(ru = r.) velocities of the oncoming stream will be given special con- 
sideration below. We shall note here however, that as shown in Section 
3, (2.3) possesses Frankl’ [ 11 singularity (1.11) at the point (r 
Further, the constructed stream function satisfies the conditions 1;.:,‘* 
and (1.3) i.e. the axis of symmetry and the wall of the wedge act as one 
streamline. Further use of Chaplygin’s equations [ 2 1 

acp *-_ l-+, tW (9 - velocity 
,=&Z 9 ;i?:- -2T(&7)P+1;58 potent ial 1 (2.4) 

and the transformation formula [ 2 1 

dx +!td9_;?$d~ 

dpzs+dtp+~$?dy (,, - density) (2.5) 

along the synunetry axis i@ = 0) give 

Since 0 < r < rO, using (2.3) and evaluating the integrals which appear 
as in Ref. f 2 1 , we shall obtain the following velocity distribution on 
the front face of the wedge. 

To show that n(r 0 ) + - ~0 for 8 + 0 we shall turn to the asymptotic 
behavior of the ChaplyRin functions. Lighthill obtained the following 
for&a 
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(2.7) 

which is valid for 1 u 1 + 00 , 0 < r < r 6 and for the whole complex plane 
Y, excluding circles of arbitrary small radii with centers u = - n, 
(n = 2, 3, 4 . . . I. For the same r and real v we [ 16 1 found the asymptotic 

relation 

Further, applying Stirling’s formula I10 1 we have (n + 00 ) 

(2n - I)!! 

2*n! 
=&[l+O(+)] 

(2.8) 

(2.9) 

Substitution of the values found into (2.6) will lead to a diverwnt 

series, as expected. Hence, .v(r ) + - 00 as 6 + 0 and (2.3) determines a 

physically feasible flow. It remains to connect the xy and r 8 planes by 

fulfilling condition (1.41, which determined c2. For this we have to know 
the stream function $ ( r , 0) in the region C 0, r J . ht the point r = r O, 
8 = 0 is singular. As a result of this the region of convergence of 

series (2.3) is limited to the area r = rO in the hodograph plane or the 

curve l9 in the physical plane. ‘lherefore it is required to continue the 

series (2.3) analytically through the region r = r O. lhis constitutes 

the major difficulty of the method applied. 

3. Analytical continuation of series (2.3) into regionr > rv 

Analytical continuation is performed by a proper choice of an auxiiiary 

Barnes integral [ 10 1. Consider 

Jjf = _$- ( B + Is ---so 
+iaD 

2x ‘5 4 
-) s r(1-+)r(++;)x 

-iaD 

x exp[- v (so+ XJ) + id] 

1+ cv Yv (4 dv 
(3.1) 

Fig. 3. 
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‘Ihe path of integration AEB is chosen so that simple poles n[, 
(n = 1, 2 . . .I are located to the right of this path and all remaining 
poles to the left. In order to exclude the possibility of appearance of 
second-order poles, we shall assume [ to be irrational, and such that 
( = (u - s0)/2r will not coincide with n + 1 and (n - l/2) 6. Then to 
the left of A@?, the expression under the integral (3.1) J(v, 8, r ) has 
simple poles at the points v = - (n + 1)) Y = - (n - l/2) 5‘ and v = - 2 R/ 
(u - so). Let us show that (3.1) for I < r0 transforms into (2.2). For 
this we shall close the path AEB by a semicircle ADB of radius R = N5‘+1/2, 
located to the right of the imaginary axis, which does not contain any 
singular points when N is an integer (Fig.3). Evaluating J(v, 8, r ) on 
the semicircle ADB of a large radius 1 v 1 = R + ~0 with the aid of asymp- 
totic gaarna- functions 1 10 1 and (2.7) we obtain 

1 J (v, 0, 7) I- -& (Ri)%xp {p (S - s,J - 9 (4 & r?, - 6)) 

where we have a minus sign for 8 < 0 and a plus sign for 8 > 0. 

Hence the integral (3.1) approaches zero as R + by and r < r O, 
0 < 8 < 2y. Therefore, the residue theorem [ 10 1 applied to the region 
AEBDA gives 

FV = c2 i ‘2n2~;‘“(l + $y&) exp {- n! (so + i9)) 0,: (*;) = #” 
n-1 -J 

The series obtained converges for any 8 and r < r O. 

On the opposite side we shall complete the path of integration AEB by 
a semi-circle AC?3 of the same radius, located to the left of the imaginary 
axis. Then by analogy we can show that integral (3.1) vanishes on the 
curve ACB as R + m for r O < r < r s and 0 < 8 < 28 and the residue theorem 
leads to the following: 

Here’ 

- + 1’ (1 + +) r (+ - $ +- cnp [so + i (; - 6)] .z+_~ (:)I 
i: 

(‘n - I)!! 2x 
~ z 1 

‘L’ln! 
for n=O, -== 

Is - slJ 

*The residue $,(r) at pole v = - n is equal to - nc,,$,,(r) where 
I‘ (u,) 1’ (n - b, + 1) 

c?1 = iyu,, - n) 1’ (1 An) r’ (n + 1) 
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It follows that the strean function for r > r,, has the form: 

+@) (7, 0) 

(3.2) 
and, as can be seen, imnediately satisfies the condition (1.31. Besides, 
the series converges for any 8 and r 0 < r < r S. In the particular case 

;s.r; s 
using the asymptotic form 1 18 1 we can show that the integral 

is defined in the characteristic triangle MB’ with arc 2 6 (Fig.2). 

To find the velocity distribution on the front face of the wedge we 
shall integrate (2.5) along 8 = 6. After substituting (2.3) and (3.2) we 
have for 0 < r < r,, 

-1-r If C 2x 
EVx &&J]r[-i-~l~&2 W (T) G-z (4 - E (~0) G-i h,)l) + 

+ 39 (To, To) (3.3) 

Hence, 
z(2) (r 

satisfying the condition (1.4) we obtain the equation 
S, r 0) = 1 for the determination of c 2. Smning, we find the 

coefficient of local pressure 

(Pi, p 1 are the pressure and density of the oncoming flow), 

Along the face of the wedge C4 we find the coefficient of frontal 
pressure per unit span: 
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Equations (3.3) has been evaluated [ 19, 20 I for 6 = 11.6129 and 
r = 0.8. 0.12, corresponding to a wedge apex angle 2 y = 31’ and free 

stream Mach number MO = 0.660, 0.826. Results are plotted in Fig. 4. 

4. Flow of a 
ing case, when r 0 

Fig. 4. 

sonic stream past a double wedge. In the limit- 
= r s(sg = u) the stream function (2.3) has the form 
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(4.1) 

This series converges absolutely and uniformly for 0 < r < r * and 

arbitrary 9 and has a singularity at the point r = r *, 8 = 0. 

In order to explain its characteristics, let us perform the following 

identical transformation: 

Here 2x-1 x+2 1 

oL=22(x-l) (x + ~)-aG=&T 3-I&) (4.2) 

is the coefficient in the asymptotic formula (v + + 00 ) derived by us 

[ 16 1 which for transonic velocities r can be expressed as 

+_, (T) = av’iwCJO ( & it7 (0) u (v”” 7) - u (0) v (v’:J q)] + 2% (J//3 + cte ,,,) 

2-;q_, (T) = - a (X + j)‘ia v’:*e-va 
i 
2& [v (0) u’ (v’la 7j) - u (0) 7.7 (Jr q)] + 

+ y$ (1/3+ ctg ,,)) (4.3) 

Here u(s) and u(s) are two linearly independent solutions of Airy’s 

equations WCs) - sV(s) = 0 tabulated by Fok [ 111 . Using (2.9) the con- 
verence of the first series (4.2) at .r = I becomes obvious. From here 
it follows that the important singularity il completely represented by 

the second series, which coincides with the main term of Frankl’s 111 
singular solution (1.11). E ven though in the approximate formulation of 
the problem conditions in the supersonic flow region remain unsatisfied, 

the singularity, corresponding to an incident sonic stream, turns out to 
be chosen correctly. Therefore 1 1 1 the stream function (4.1) is regular 

on the characteristics B’F (Fig.2) and determines the flow where all the 

stream Iines cross the sonic line. Assuming that I = T 0 
given by (3.3), (sO = 

in x(l)(r) 2,) 
0) we shall obtain the formula for the velocity 

distribution on the front face of the we&e. In this case, condition 

(1.4), which defines the scale coefficient c2B, should be taken in its 
limiting form 
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- E F’ lim i (_ 1 )“+l (2ngnf)!! -$& e-nc'GG,t <TV - E) 

c-to n-1 

In order to realize the transition to the limit, we transform this to 

aE (7,) (x + 1)“: - l v;sl,’ u (o) (4.4) 

By applying (2.9) and (4.3) we can show that it is permissible to 

interchange the order of the operations lim and Z in the first series. 

'Ihe last limit was previously calculated [3 1 as 

lim 5 (- l)"+'n'i~r' ($11 .!j'L q) = - u'(O)(2"' - l)C(- $ ) (4.5) 
V+O n-1 

where c is the zeta function [lo 1. Hence (4.4) and (4.5) determine c2B. 
lhe coefficient of frontal pressure is determined from (3.4) by substi- 

tuting rO = rg. Ihe velocity distribution on the wedge f = 11.6129 

(6 = 15O5) in the case of sonic flow is shown in Fig. 7. Here we also 

show the results of Ovsiannikov [8 1 for a wedge with 6 = 15', using a 
dotted line. 

Fig. 

If we consider the 

Chaplygin's functions 

(4.3) i.e. 

5. Fig. 6. 

flow past a thin wedge, then 5 is lar& and 

can be replaced by their asymptotic representations 
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2’ (T) = E ‘!?f!. i (_ l)n+l (zn2~~)!! e-nF;a GnC (T) 

n-1 

c',= 
c*Ba (X + l)‘ia 

wmsx $‘*z IG* (i - T8) 

(4.6) 

where 

c2Ba (x + lfJa 

3 

,‘I. 

Wmax El” 1 Y 7, (1 - Ts) 
. - y=g (- 1y+1+ 

1 

2% _ 1 

+- 
1 

v; c --- ( > 3 

The paphs of the velocity and pressure distribution on a wedm with 

a 10 per cent relative thickness are even in FiE. 5 and 6 respectively. 

For comparison we show experimental results I 17 1 as the dotted curve. 

In Fig. 6 we also show the results of 
Olderley [ 7 1 for a we& of the same 

that (4.7) Rives 

c; = 1.77 
8’1, 

(x + 1) 

the theoretical investigations of 
thickness. For C,* we shall note 

( 
C; = 1.75 i+ 

(x + I)“’ 
) 

‘l’he latter (in brackets) are the results of Guderley 17 1 . 

5. Traosonic gas flow past a thin double wedge. In order to 

obtain the case of transonic flow past a thin double wedw from the 

general results of Section 3, we assune that c1 and r - r are small. 

We can then apply the asymptotic formula (4.3) in (1.45 and’(3.4). We 

combine the velocity of the onccminR stream r o(so) and the angle of the 

wedmG(O to form a parameter of transonic similarity 

k, = 
i-M,,2 

1(x + 1) q”, 

Furthermore, in order that the coefficient of frontal pressure corres- 
ponding to the law of transonic similarity shall have the form: 

C,=“l’j(k,) 
( %-/- I)“, 

we shall disregard the following terms in the asymptotic expansion (4.3) 

ctg (n + +-) isr, ctg &T 
so 

Then to the order of c1 and r s - r o we shall have 
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c x= 
c2 (B + ~/JI~‘~*) a (x + I)“* 
wmax 1p r/-q1 - 7y 

}_$!I_{; (_ 1)“+‘(2-$!!n’:. x 

n-1 

1 
X 

1 + I/* nk,‘~~~ 
exp 

( 
-& nxko’~~) u (n’WMo) + &$ (- l)@;;s;)!l(n+ iJ"x 

n-0 

x _erp I- 2/~ (n + l/d ~ko"rl 

I--’ 'It is (n + ‘id h [f 
32?(O) - -$ [v (0) u ((n + l/g)*wuco) - 

- u (0) 2, {(n + $)‘WJ~ k,} 3v {(n + $)‘1. d*k,)] - 2 g;--yk ,, - x 
0' 

x~(l+~)~(~-~)[~~~(O)-~Iu(O)u{(3x)’~~}-u(O)u{(3a)‘l~}]- 

-V% ((3ql.) 
3 
&) 

Where 

I 
3’ .,-2’; 

-r -il/iir(0)kob~’ 
r (1 + 3x."-~)T1(+ -3k,-"'){lqO)~3+ & - 

- V322" [(3;c) *'"I - .fii [Z' (0) 11' [(3;r)'ll] - II (0) 2" [(a+]]} 

In Fig. 4 we have the calculated velocity distribution on a wedge with 

6 = 7O.5. For purposes of comparison we have plotted experimental curves 
[ 12 ] for a wedge of 6 = 7O.5 followed by a semi-infinite plate. They are 
shown as dotted lines. 

Fig. 8 shows ($ = C,(K + 1) 

mental points ] 12 I. 
1'3/65'3 as a function of k, and experi- 

Using some cumbersome expressions, we have also 

shown that on the surface of the we& the above 85'3 formulas give 

$2 dJi 

(x + 1)": ' dMll ,h, _-1= 
0 

0 

where M is a local Mach number. This fact was established experimentally 

[12,17 1. 
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0 
0 014 

Fig. 7. Fig. 8. 

In the case of transonic flow, we are especially interested in the 
form of the sonic line. ‘lhe latter allows us to estimate the size and the 
behavior of the local supersonic zone near point A (Fig. 1). Integrating 
(2.5) along r = ro, we find, to the order of cl, that the coordinates of 
the transition line in a system with origin at point A are 

1 
y, = a (l_-7)li-YP(Ts, 0)s xs= de (5.1) 

l B T-78 

where a* is the critical sound velocity. Within the limits of the accepted 
approximation (2.11) has the form 

When introducing the latter into (5.1) and applying the asymptotic 
(4.3) it is necessary to disregard the terms with ctg(n + l/2) ET and 
ctg12 7r*/ (0 - so)1 so as not to change the law of transonic similarity 
14 1. As a result we obtain the equation of the sonic line in the para- 
metric form 

y = y, tx + If/s g’~, = _ ~3 (B + ‘/a kd”) cm”’ Cl’ 

2a.f’~ (x + I)-“. (1 - ‘JB 
{ $ (2x- I)!! x 

,to 2n n! 

x ~xP[-+(n++k”‘] x ~_~,~~~!l:;kd,~eos(n+~)~e+ 

-I- “;f~~,~.r(l+~)~(;-~k~f’)ain[~(~-~)]} 
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x 
a 

= co (B + ‘19 Ko? a (x + iP* DW (0) + 1.b lo)] 
2up* v (0) (1 - T8 )@ P ao (h - I y n + 1 81. x 

n-0 Pn! ( > -z 
e=P [- ‘Is (n + ‘/a) xko x 1 

‘1 

- l/s (n + l/1) k,“= 
” [(-1,““+si*(n++)~+]+ 

+3zr(l ~3k,J’~)r(~-33h,-“‘)[cos~(l-~)-~]} 

Fla. 9. Pig. 10. 

‘lhe curves obtained are plotted in Fig.9 where the dotted line shows 
the experimental [ 12 1 results for a wedge with a semi-infinite plate 

downstream. It is understood that the disturbance decreases as we get 

away from the profile, so that d = max, y = y (min 0) determines exactly 

the diameter of the local supersonic regik in’tenns of k,. In Fig. 10 
the result for a double wedge of 12 per cent relative thickness and the 

experimental [ 15 1 result (dotted) for an airfoil section of the same 

thickness are conpared. Here we can see directly that the supersonic 

retion is enlarged with increase of velocity of the oncoming stream and 

extends to infinity when M, = 1. It also follows, from the character of 
Frankl’s singularity, that in this case the sonic line away from the 
profile has the form 

y, 2 Cxl'l, 
II 

From this we can deduce that the “~neralizin~ function” (1. I.21 not 
only gives a correct qualitative picture of the flow past double wedge in 
the rwion 0 < M, < 1 but also leads us to quantitative results which are 

in a canplete agreement with the experimental ones. Naturally we cannot 
expect a unique choice of .&(r 0 ), as the problem was solved in an approxi- 
mate form and the conditions in the supersonic region remained unsatisfied. 

However, when the velocity of the oncoming stream is not Rreat, the super- 
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sonic region is small and its influence can be neglected. As we approach 

the sonic flow about a double wedge our solution is still correct and 

describes the existing flow with au adequate degree of accuracy because 

of the accurate character of the singularity, and of the stream function 

for this flow. Besides, as shown in [ 13 1 , the satisfaction of condition 

1.5, governing the expansion of the stream at the point A (Fig. 1) leads 

to only negligible chanws of the aerodynamic characteristics of the 
flow. 
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